Proteomics data repositories: PRIDE

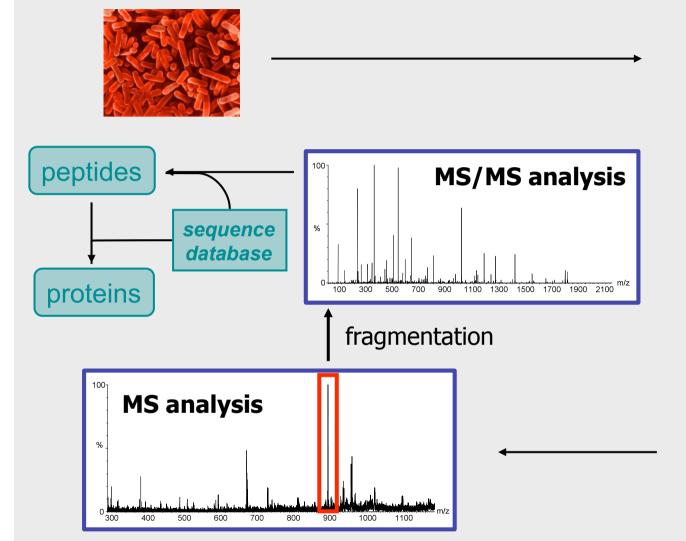
Dr. Juan Antonio VIZCAINO

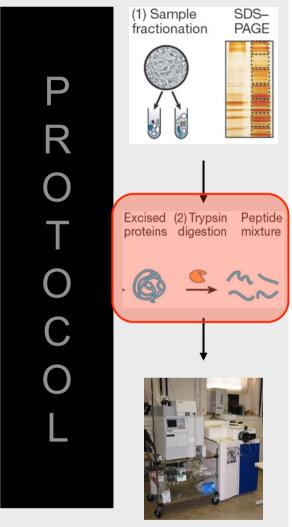
PRIDE Group coordinator

PRIDE team, Proteomics Services Group
PANDA group
European Bioinformatics Institute
Hinxton, Cambridge
United Kingdom

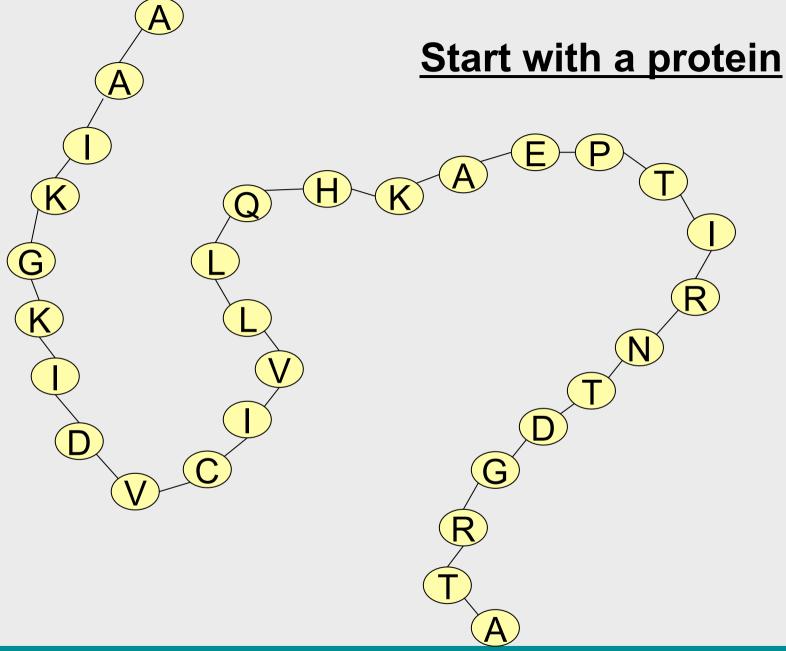
Overview ...

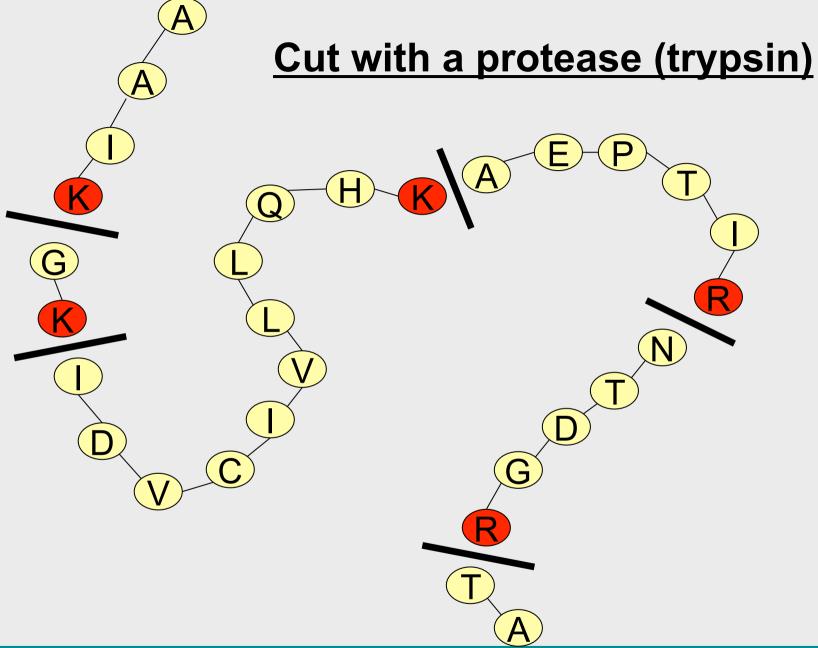
- Why sharing proteomics data?
- Introduction to existing proteomics repositories
- Proteomics data bottlenecks
- PRIDE in detail...
- ProteomeXchange consortium

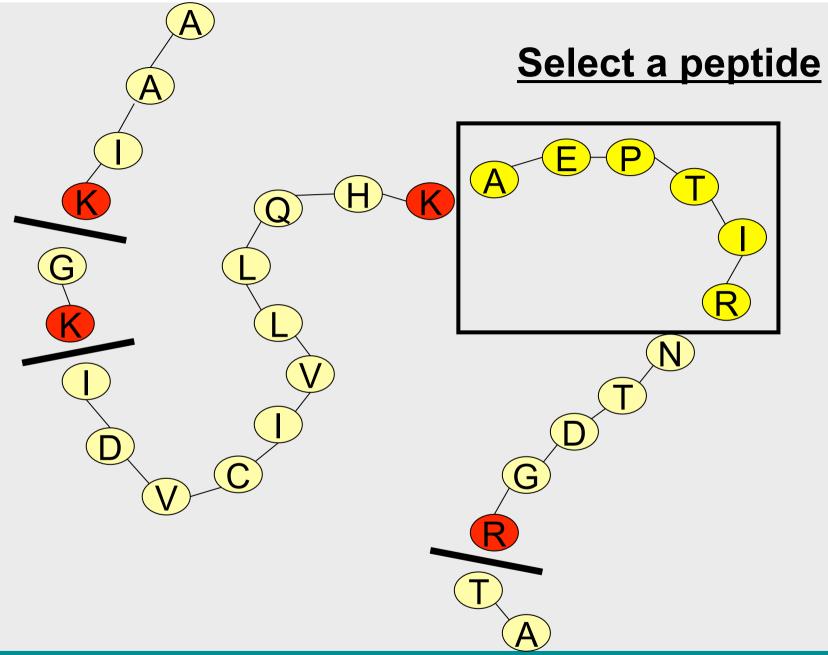


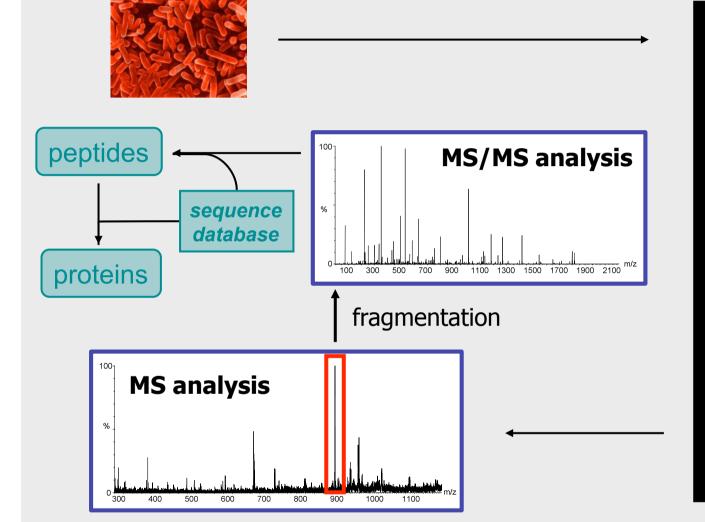

A ONE-SLIDE INTRODUCTION TO MASS SPEC PROTEOMICS

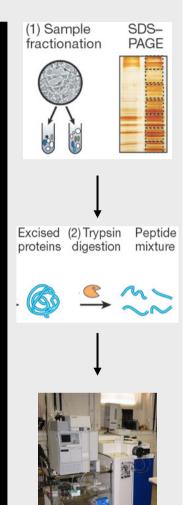
MS proteomics: overall workflow











MS proteomics: overall workflow

THE RATIONALE BEHIND SHARING PROTEOMICS DATA

Need of data sharing in the proteomics field

FDITORIAL

nature biotechnology

Credit where credit is overdue

A universal tagging system that links data sets with the author(s) that generated them is essential to promote data sharing within the proteomics and other research communities.

recognized by employers and funders alike.

guidelines specifying the minimum reporting requirements for papers integral to consistency, accessibility and, above all, utility of sequence describing proteomics and molecular interaction experiments (Nat. data for reanalysis. Biotechnol. 25, 887–893, 894–898, 2007). Both sets of standards encourage deposition of data in public repositories, a practice that at the time researchers have been slow to embrace data disclosure. It is equally clear was not universally adopted in proteomics.

line authors published at least one manuscript last year for which no Clearly, other incentives are needed. accompanying data were archived. If the proponents of data-reporting

One option would be to provide researchers who release data to public guidelines—most of whom are better resourced than other researchers is unlikely that the wider community is doing so either.

sure may result in the loss of an edge over competing research groups. enable appropriate attribution for those who share. In essence, the tag Occasionally, data are withheld while intellectual property is secured. More would be a digital object identifier (DOI), currently best known for its often, though, a failure to share simply reflects the considerable time and use in unambiguously identifying papers online effort associated with formatting, documenting, annotating and releasing Similar to citation information about publications, citation informaspectrometry and protein identification data) should prove helpful.

of the data itself pose particular challenges. Concerns about the quality could thereby be rewarded accordingly. of proteomics data generated by mass spectrometry have long plagued approaches of a few years ago.

Science progresses most rapidly when researchers provide access to their data. This is not only good scientific practice. It facilitates munity's reticence about disclosure. For many researchers, the software the confirmation of original results. It provides others with a starting provided by the public repositories for searching and analyzing proteompoint to explore new or related hypotheses. It speeds the identificatics data is not as efficient and user friendly as it could be. An analysis tion of errors and discourages fraud. And it minimizes inefficient use published last month by the Human Proteomics Organization cited the of funding in duplicating experiments. And yet, full data disclosure misassignment of pentides to ambiguously annotated proteins by datain proteomics, and many other fields, remains a work in progress. If hase search engines as one of the major hindrances to researchers in the practicing scientists are to be truly incentivized to spend time and field (Nat. Methods 6, 423-430, 2009). What's more, despite the recent effort on sharing data, funders and publishers need to develop a universally recognized tagging system that would link investigators to their fication data—the US National Center for Biotechnology Information's deposited data. In this way, publicly disclosed data sets would become Peptidome repository (p. 600)—the various proteomics databases have part of a researcher's publication record, allowing such efforts to be yet to introduce a standardized data format that would allow the seamless exchange of data. Contrast this with the genome databanks, where Next month marks the two-year anniversary of the publication of the pooling of nucleotide sequence data in a common format has been

that disclosure edicts and recommendations from funding agencies and We have carried out an informal survey of all manuscripts published scientific journals have been insufficient to ensure widespread proteomics in the year following publication of the two guidelines by the 68 authors data release, despite evidence that the papers of researchers who share of those two papers. The analysis reveals that a majority of the guide-

repositories with a means of accreditation. This would take the form of in the field—are not depositing all of their data in a public repository, it a universally standardized tag for data that could be searched and recognized by both funding agencies and employers. An ability to search One issue that inhibits openness is the perception that full data disclo-

data. In this regard, the availability of new tools, such as an application tion about a researcher's data DOIs could be gathered by funders assess-(p. 598) to facilitate deposition of data in PRIDE (a public archive for mass ing future support and used by institutions in performance evaluation. Researchers who disclose data sets that subsequently prove particularly For proteomics, the rapidly evolving technology and the complexity useful to the community would end up with highly cited data DOIs, and

Such a system would not solve all the problems slowing data disclothe field, raising the issue of whether peers have sufficient faith in sure in proteomics and elsewhere. But it would provide greater incenother groups' work to not only value the data lodged in public repositive than the present system of evaluation, which is skewed almost tories but also make the effort to deposit their own. Here too, though, exclusively to publications in high-profile journals and citation metprogress is being made. A study reported in this issue (p. 633) demonstrates the high reproducibility of a targeted proteomic approach for also establish priority of data generation. Most important of all, they biomarker discovery from plasma among several laboratories. Such a would provide a way to acknowledge the time and effort individuals result would have been difficult to achieve using the technology and must invest in sharing data, which ultimately benefits the scientific community as a whole.

NATURE BIOTECHNOLOGY VOLUME 27 NUMBER 7 JULY 2009

Proteomics data sharing: why?

- 1) Data producers are not always the best data analysts
 Sharing of data allows analysts access to real data, and in turn allows better analysis tools to be developed
- 2) Meta-analysis of data can recycle previous findings for new tasks
 - Putting findings in the context of other findings increases their scope
- 3) Sharing data allows independent review of the findings

 When actual replication of an experiment is often impossible, a reanalysis or spot checks on the obtained data become vitally important
- 4) Direct benefit for the field: fragmentation models, spectral libraries, ...

Simply sharing data is not enough...

Table 1. Identities of stress-induced prote			Table 1. Identification of exosomal proteins based on MALDI-TOF peptide mass fingerprinting or MSMS-derived sequences									4.0-16-1		i
- Table 1.	rueriules or siles	ss-induced protei	Band (Fig. 1)	Protein Name	Identification Method ^a	Accession Number ^a	Molecular Mass (kDa)	Matching Peptides	Sequence Coverage (%)			(kDa)/pl	Accession no.	Species
			A	Mac-1 α-chain = CD11b			Théry et al., 1999 (14)			hase				
Spot ID	Synonym	Function	1	Complement C3 ^c PK-120 ^c a⁄2-Macroglobulin ^c	MS/MS (7) MS/MS (3) MS/MS (2)	4093220 Not in databas Not in databas	es				Stress	ntal Theoretical		
1202	SCO0525	Hypothetical r	2	Plasminogen ^c	MS/MS (2) MS MS	P06868 6755002 ^d	91 96	28 26	37 34		CS	69.07/5.8	BAA97338	Arabidopsis
3307	SCO2988	UDP-glucose	3	Alix	MS/MS (6)						CS			thaliana
3509	SCO2988 SCO2180	Putative dihyo	3	Mac-1 β -chain = CD18	MS MS/MS (1)	P11835	85	27	38		CS			
6413	SCO2180 SCO6027	Probable acet	4 5	hsp90-β = hsp84 Serum albumin ^e	MS MS	P11499 P02769	83 69	30 42	38 66		CS	62.82/6.4	P42863	Oryza sativa
	SCO5027 SCO1494		В	hsc73	MS/MS (3)		Théry et al., 1999 (14)	-						
6419 6823	SCO1494 SCO5477	3-Dehydroquii		MFG-E8/lactadherin			Théry et al., 1999 (14)				CS CS	65.29/6	Q43097	Lotus
		Putative oligo		Tubulin β Annexin VII = synexin	MS MS	P05218 Q07076	50 50	20 6	44 13				D	japonicus
118	SCO1340	Conserved hy		Bovine coagulation factor X ^c	MS/MS (3) MS/MS (2)	P00743	54				EtOH	62.82/6.4	P42863	Oryza sativa
1104	SCO2368	Conserved hy		PEDF ^c	MS/MS (3)	Q95121 3184260 ^d	46 44				EtOH			
1617	SCO5373	ATP synthase		Tumor susceptibility protein (tsg) 101	MS/MS (2)						EtOH	67.71/6.9	Q00775	Salanum
2601	SCO5373	ATP synthase		Rab GDP dissociation inhibitor (GDI) 3	MS MS/MS (1)	Q61598°	51	10	21		EtOH			tuberosum
3616	SCO5371	ATP synthase		Elongation factor (EF) 1-α-1 EIF-4A-II	MS/MS (2) MS/MS (2)	P10126 P10630	50 46				EtOH	67.69/7.1	BAA77351	Triticum
5721	SCO4814	Bifunctional p		Annexin I	MS	P10107	39	7	25		EtOH			aestivum
1515	SCO2180	Putative dihyc		Reverse transcriptase/pol	MS/MS (2) MS/MS (1)	61790^{d}					HS	62.64/8.5	Q42608	Brassica
1616	SCO3661	Putative chap		(murine leukemia virus) γ-Actin			Théry et al., 1999 (14)				HS			rapa
2706	SCO3671	Heat shock pr	E	Ğ protein G _{i2} α subunit Annexin II			Théry et al., 1999 (14) Théry et al., 1999 (14)				HS	54.96/5.2	Q38681	Acetabularia
2906	SCO5999	Aconitase	9	Annexin V	MS	P48036	36 36	16	54		HS			acetabulum
3504	SCO1936	Putative trans	10	Annexin IV	MS/MS (4) MS	P97429	36	20	63		HS	57.44/7	P30567	Gossypium
5310	SCO0506	NH(3)-depend	10	Galectin-3 = Mac-2	MS/MS (4) MS	P16110	27	11	37		HS	57.94/8	P37215	hirsutum Lycopersicon
7417	SCO5477	Putative oligo			MS/MS (6)	2197106 ^d	32	17	35		HS	57.94/8	P37215	esculentum
505	SCO1998	30S ribosoma	- 11	Syntenin	MS MS/MS (6)			17	33		NaCl			
1711	SCO1352	Xaa-pro amin		Gag polyprotein (murine leukemia virus)			Théry et al., 1999 (14)				NaCl			
2618	SCO0681	Putative ferred		MHC class II β-chain 14-3-3 protein η	MS	P11576	Théry et al., 1999 (14) 28	21	68		NaCl	49.59/7.1	S33520	Soybean
2722	SCO1998	30S ribosoma		14-3-3 protein γ/δ	MS/MS (4) MS	P35215	28	20	63		NaCl	43.04/6.1	P51110	Lycopersicon
4407	SCO5113	Oligopeptide /		. ,	MS/MS (2)		20	20	63		NaCl			esculentum
4509	SCO2390	Beta-ketoacyl	12 13	14-3-3 protein γ Apolipoprotein A-I ^c	MS/MS (1) MS	3065929 ^d P15497	30	25	67		NaCl	38.79/6.2	P51110	Vitis vinifera
1803	SCO2181	2 Oxoglutarat	7.7	CD9 Thioredoxin peroxidase II	MS	P35700	Théry et al., 1999 (14)	8	43		P1	27.54/8.8	BAB03428	Oryza sativa
2113	SCO4277	Hypothetical p		•	MS/MS (6)	P46638			12		P1	27.54/8.8	BAB03428	Oryza sativa
3101	SCO3899	Hypothetical p	14	Rab 11 к-Casein ^c	MS/MS (1) MS/MS (2)	P02668	24 21				P1	24.36/8.6	BAA92870	Oryza sativa
4309	SCO1081	Putative elect	15	Rab-7	MS/MS (3)	P51150	24	5	26		P1	26.58/6.4	P09886	Pisum sativum
4512	SCO5212	3-Phosphoshi		Ferritin light chain ^c Rap1-B	MS MS	O46415 P09526	20 21	15 14	73 57		P1			
5514	SCO3629	Putative aden	17	Cofilin	MS	P18760	19	10	50		P1			
5514	0000029	i dianve aden	19	Histone H3 Histone H2B	MS MS	Z85979° P10853	15 14	7 13	45 82		- ' '	56,77/6,1	P55238	Hordeum
+ SOD1			19 20	Histone H2A Histone H4	MS MS	P20670 90626 ^d	14 11	12 15	67 90			36.7776.1	FOOZOB	vulgare
+ 3001			20 21	Profilin I Hemoglobin y-chain	MS MS	P10924 P02081	15 16	11 16	60 74					-
			21	Hemoglobin α-chain ^c	MS	P01966	15	9	66					

A nuance: available data vs. accessible data

When data is only made available as arbitrarily formatted tables, it carries important limitations

- Source data are not made available
 - o No peer review validation possible
 - o Very little raw materials for testing innovative in silico techniques are available
 - o Traceability of data is lost quickly in downstream results
- Automated (re-)processing of the results (e.g., identifications) is impossible
- Data producers do not actually feed their results and knowledge back to the community

Community standards for proteomics

The Human Proteome Organisation (HUPO)
Proteomics Standards Initiative (PSI)

http://www.psidev.info

- Creates minimal requirements, standard formats, and CV's and ontologies
- Composed of several workgroups

Molecular Interactions	(MI)	PSI-MI format v2.5
Mass Spectrometry	(MS)	mzData, mzML format
Protein Separation	(PS)	GeIML format
Proteomics Informatics	(PI)	mzldentML format
Protein Modifications	(Mod)	PSI-MOD ontology

How do we make this all happen?

Journal guidelines

Journal guidelines heavily influence the decisions taken by authors; by first requesting and subsequently mandating data submission to established repositories, they provide an important stick.

Funder support and guidelines

Funders contribute both sticks and carrots. The sticks lie in the grant application guidelines; they can require a plan for data management and dissemination. The carrot is in providing specific funding for this aspect of science.

Data repositories

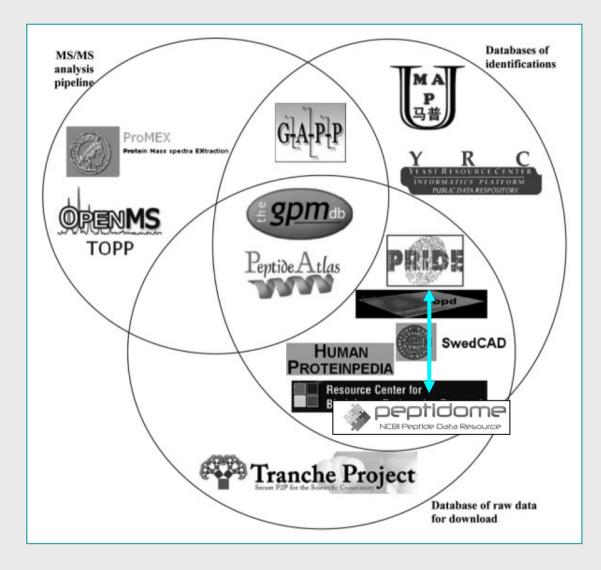
The availability of reliable, freely available repositories is key; submission thresholds should be kept low and **added value** needs to be provided. Furthermore, feedback loops need to be established in order to ensure that accumulated data flows back to the user community. Repositories thus provide mostly carrots.

PROTEOMICS DATA REPOSITORIES AVAILABLE TODAY

Existing proteomics repositories

- Main public repositories:
 - PROteomics IDEntifications database (PRIDE)
 - Global Proteome Machine (GPMDB)
 - Peptide Atlas
 - Tranche
 - NCBI Peptidome

Smaller scale repositories, more specialized:


Among others: Human Proteinpedia, Genome Annotation Proteomics Pipeline (GAPP), MAPU, SwedCAD, PepSeeker, Open Proteomics Database, ...

• Very diverse: different aims, functionalities, ...

A comprehensive view on existing systems

From: Mead et al., Proteomics, 2009

Types of information stored

• 1) Original experimental data recorded by the mass spectrometer (primary data)

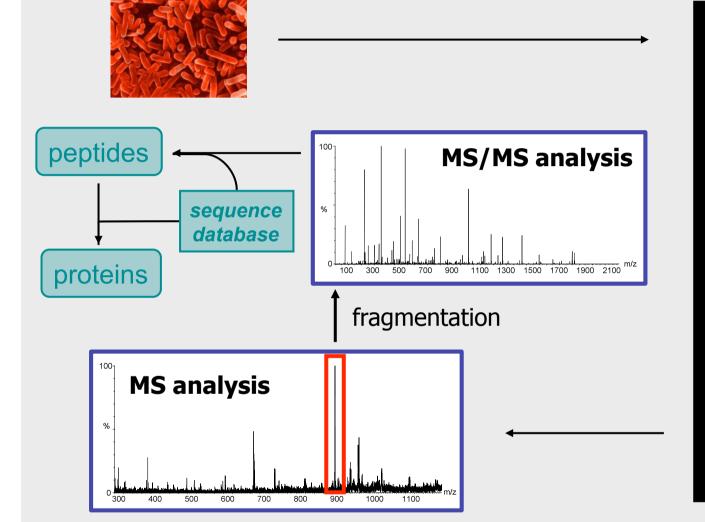
Primary data

Waters **Agilent Technologies** Binary data Applied Biosystems mzData XML-based mzML files mzXML .dta, .pkl, .mgf, **Peak lists** .ms2

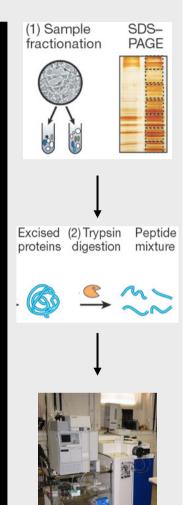
Types of information stored

- 1) Original experimental data recorded by the mass spectrometer (primary data)
- 2) **Identification results** inferred from the original primary data

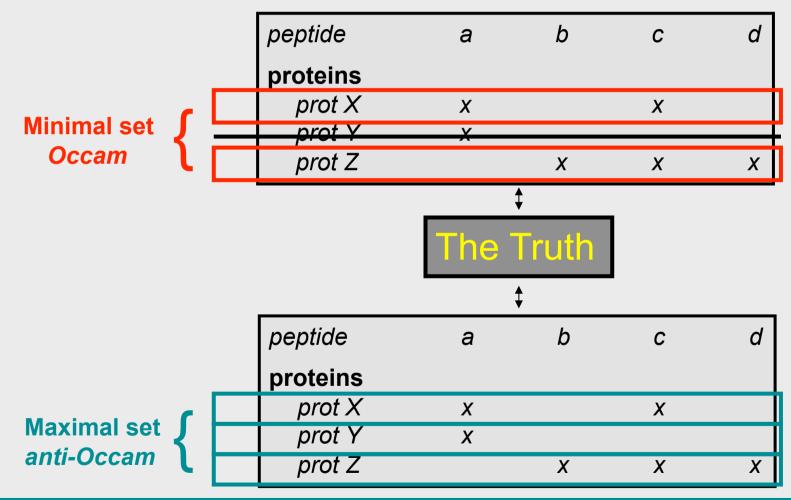
Peptide and Protein Identifications


mzldentML, mascot .dat, sequest .out, SpectrumMill .spo pep.xml, prot.xml

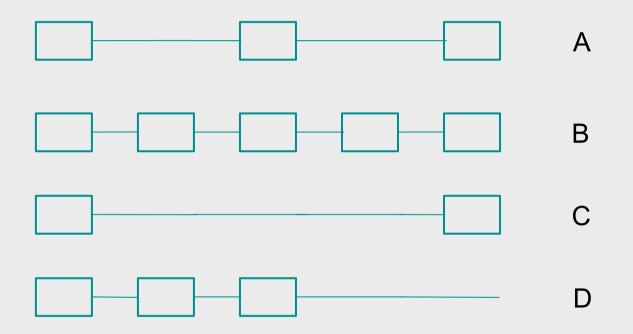
Only qualitative data!

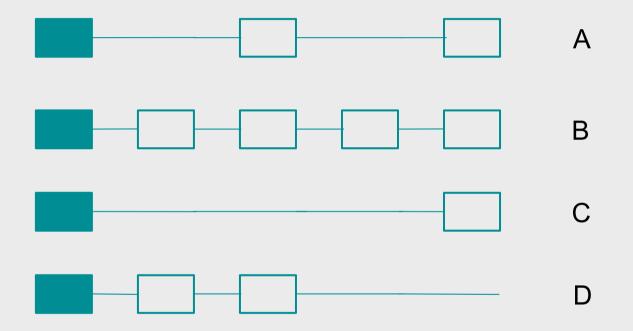


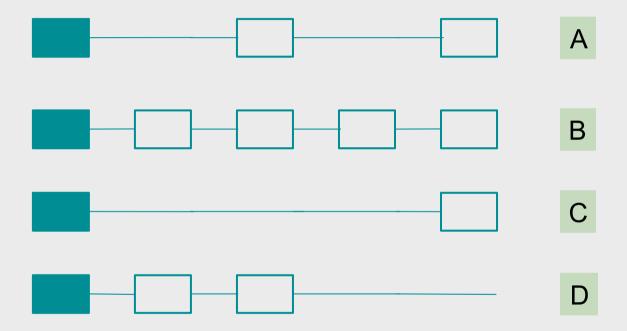
MS proteomics: overall workflow

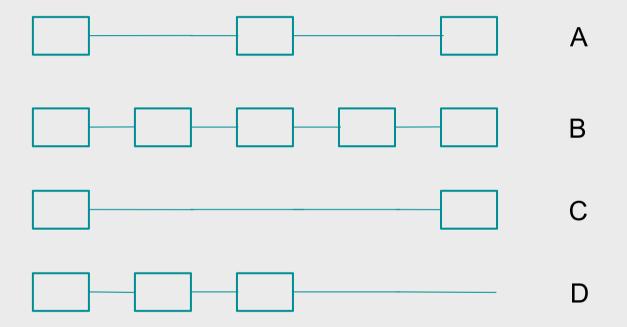


Intermezzo: Protein inference

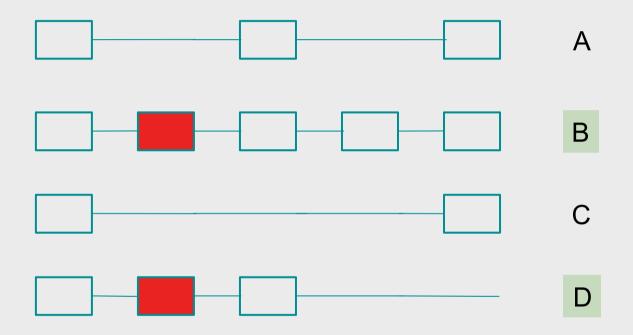

The *minimal* and *maximal* explanatory sets

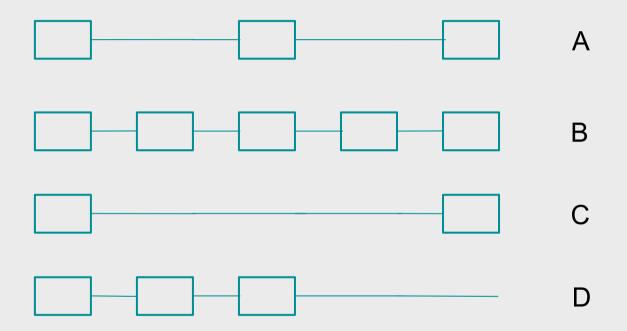

An additional layer of complexity...

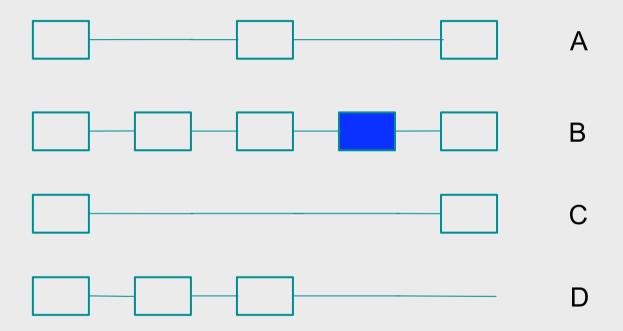


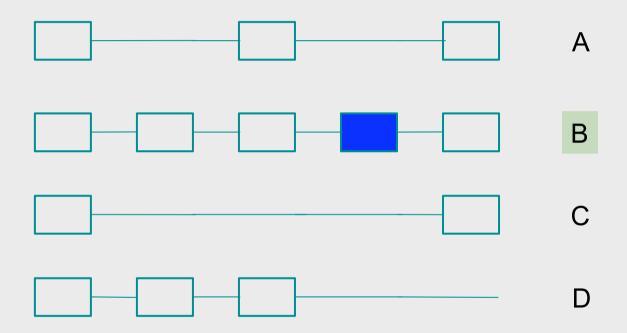






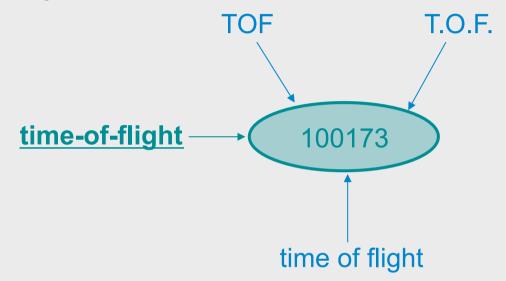




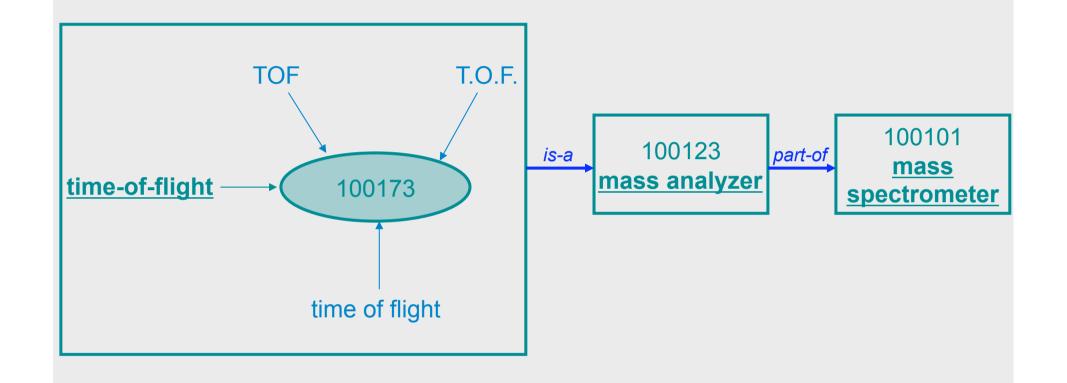


Unambiguous peptide

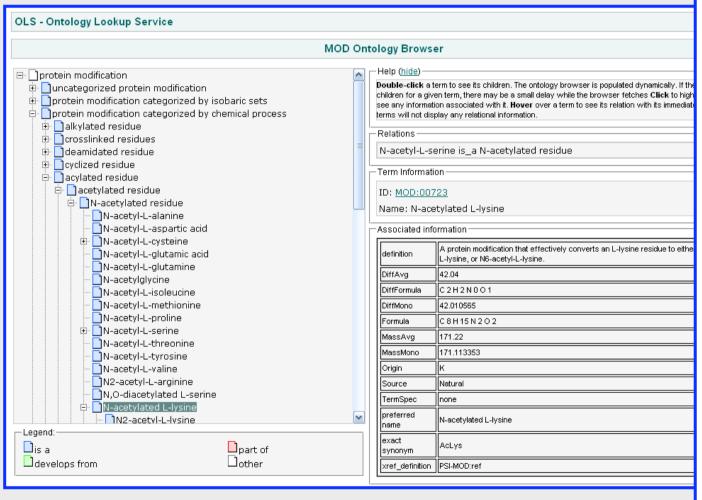
Types of information stored

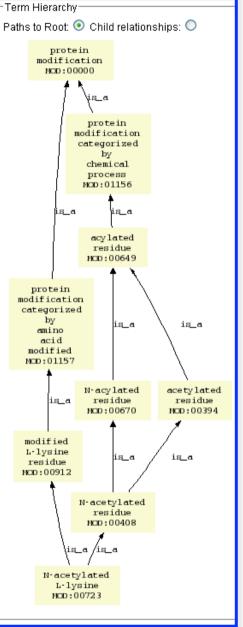

- 1) Original experimental data recorded by the mass spectrometer (primary data)
- 2) Identification results inferred from the original primary data
- 3) Experimental and technical **metadata**

Controlled Vocabularies (CVs)


Term Synonyms

Relationships between CV terms





CVs, ontologies (here: PSI-MOD)

http://www.ebi.ac.uk/ols

Types of information stored

- 1) Original experimental data recorded by the mass spectrometer (primary data)
- 2) Identification results inferred from the original primary data
- 3) Experimental and technical **metadata**

• 4) **Quantitation** information

Wide variety of quantitative techniques...

Quantitation: Overview

Many different approaches to protein quantitation using mass spectrometry data have been described in the literature. For a short, recent review, see Ong, S. E. and Mann, M., Mass spectrometry-based proteomics turns quantitative, Nature Chemical Biology 1 252-262 (2005). In terms of the "mechanics" of their implementation, most of the popular approaches can be classified into a relatively small number of **protocols**:

- Reporter: Quantitation based on the relative intensities of fragment peaks at fixed m/z values within an MS/MS spectrum. For example, iTRAQ and Tandem Mass Tags
- Precursor: Quantitation based on the relative intensities of extracted ion chromatograms (XICs) for precursors within a single data set. This is
 by far the most widely used approach, which can be used with any chemistry that creates a precursor mass shift. For example, ¹⁸O, AQUA,
 ICAT, ICPL, Metabolic, SILAC, etc., etc.
- Multiplex: Quantitation based on the relative intensities of sequence ion fragment peaks within an MS/MS spectrum. This is a novel approach, which can be used with labels located at the peptide terminus, such as ¹⁸O or SILAC at K or R in combination with tryptic digestion.
- Replicate: Label free quantitation based on the relative intensities of extracted ion chromatograms (XICs) for precursors in multiple data sets aligned using mass and elution time.
- emPAI: Label free quantitation for the proteins in a mixture based on protein coverage by the peptide matches in a database search result.
- Average: Label free quantitation for the proteins in a mixture based on the application of a rule to the intensities of extracted ion chromatograms (XICs) for the peptide matches in a database search result.

Some protocols can be fully implemented within a Mascot result report because all the necessary information is present in the peak list. These protocols are Reporter, Multiplex, and emPAI. In fact, emPAI is "always on", and will be reported whenever an MS/MS search contains at least 100 spectra.

The other three protocols require additional information from the raw data file, either because it is necessary to integrate the elution profile of each precursor peptide or because information is required for precursor peptides that were not used to trigger MS/MS scans, so are missing from the peak list. So, for Precursor, Replicate, and Average, the quantitation report is generated in Mascot Distiller, which has access to both the Mascot search results and the raw data.

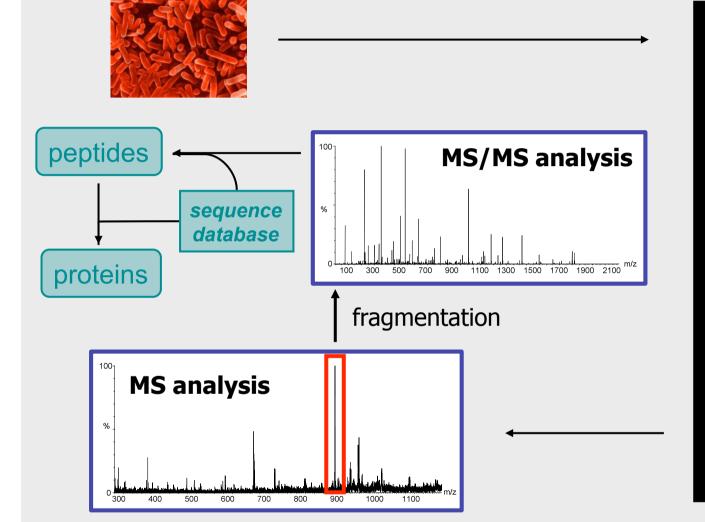
Quantitation techniques

Label free

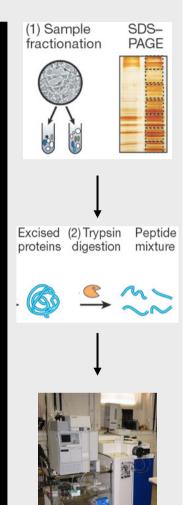
Gel-based quantitation approaches

- -Different philosophies
- -Very heterogeneous data formats
- -Techniques not very well established

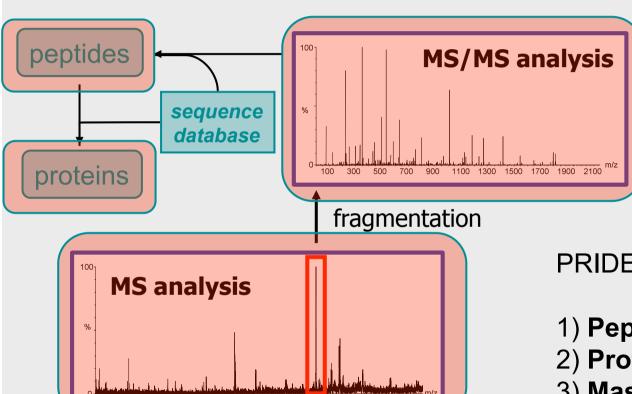
Very problematic data for proteomics repositories



PRIDE



MS proteomics: overall workflow



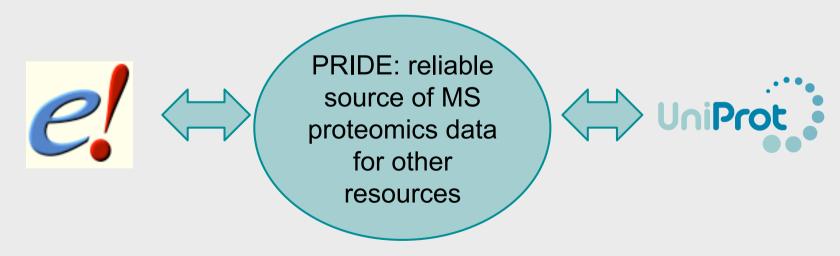
PRIDE database (www.ebi.ac.uk/pride)

PRIDE stores:

- 1) Peptide IDs
- 2) Protein IDs
- 3) Mass spectra as peak lists
- 4) Valuable additional metadata

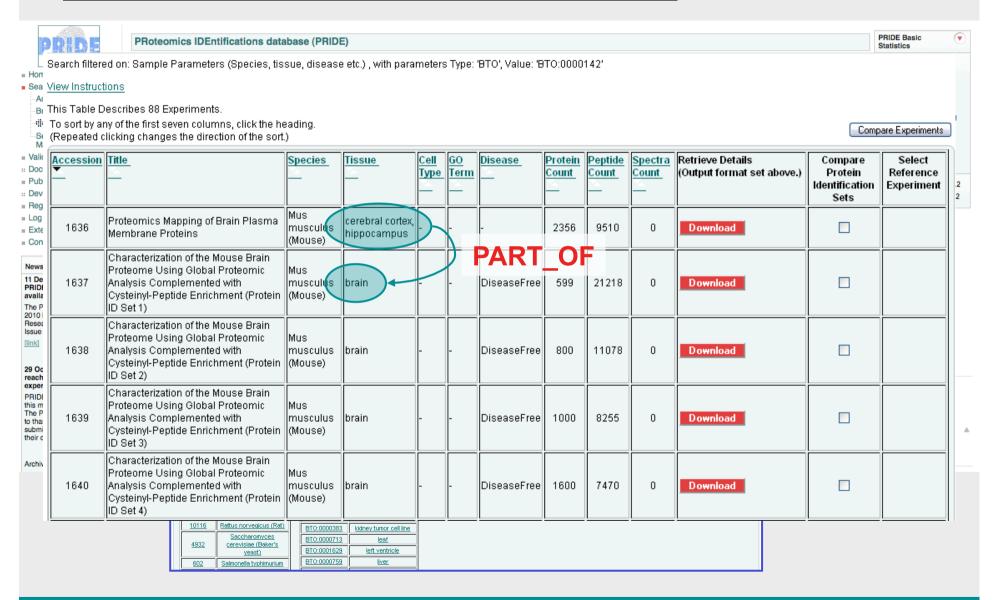
PRIDE: why is it there?

Repository to support publications (proteomics MS derived data)

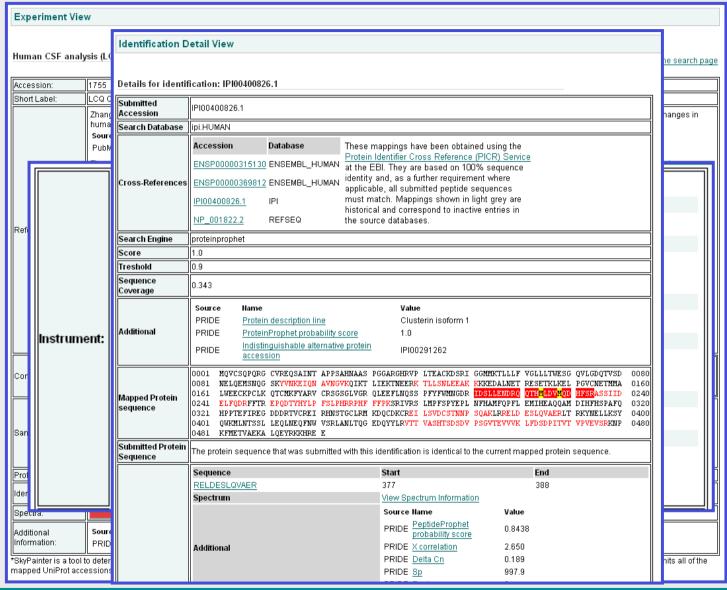


PRIDE: why is it there?

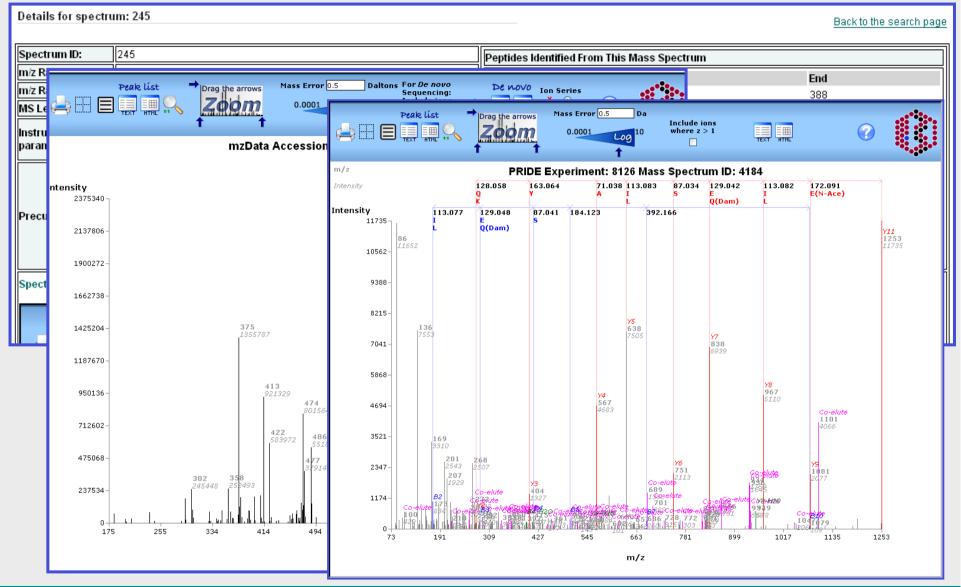
- Repository to support publications (proteomics MS derived data)
- Source of proteomics data for other data resources

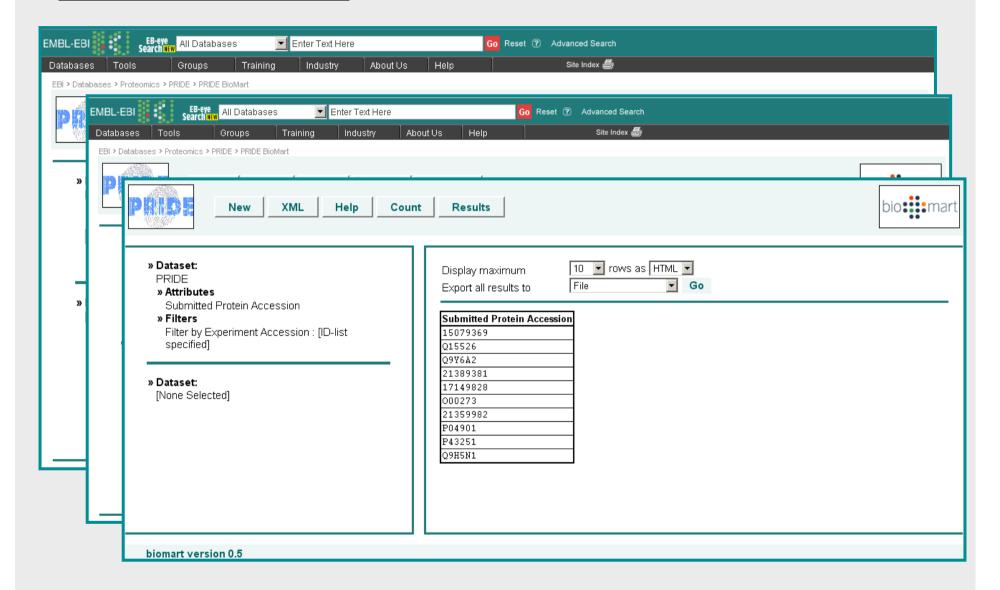


THE LOOK OF PRIDE


PRIDE web interface – overview

PRIDE web interface – experiment and protein




PRIDE web interface – mass spectra

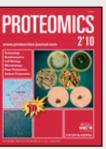
PRIDE BioMart

The spectacular bit: across-BioMart queries!

bio						номе	MARTS	ERVICE DOC	CS CONTACT	NEWS	CREDITS
New Count Results									★ URL	◆ XML	Peri 📵 Help
Dataset 1895 / 37435 Genes	Export all results	to	File			TSV	Unique re	esults only	Go		
Homo sapiens genes (NCBI36)	Email notification	to	1110			101	- Onique in	oddio only	do		
Filters	Linaii notineation	10									
Chromosome: 11	View 10 → rows as HTML → Unique results only										
Attributes Ensembl Gene ID Ensembl Transcript ID Gene Start (bp) Gene End (bp)	Ensembl Gene ID	Ensembl Transcript ID	Gene Start (bp)	Gene End (bp)	Chromosome Name	Associated Gene Name	Ensembl Protein ID	PRIDE Experiment Accession	Experiment Title	Submitted Protein Accession	Uniprot Accession
	ENSG00000221842	ENST00000335295	5203272	5207201	11	HBB	ENSP00000333994	13	HUPO Plasma Proteome Project, Lab # 2 Expt # 17	IPI00218816	P68871
Chromosome Name Associated Gene Name Ensembl Protein ID	ENSG00000118137	ENST00000236850	116211677	116213571	<u>11</u>	APOA1	ENSP00000236850	13	HUPO Plasma Proteome Project, Lab # 2 Expt # 17	IPI00021841	<u>P02647</u>
	ENSG00000118137	ENST00000375320	116211677	<u>116213571</u>	<u>11</u>	APOA1	ENSP00000364469	13	HUPO Plasma Proteome Project, Lab # 2 Expt # 17	IPI00021841	<u>P02647</u>
Dataset 498 / 8173 Experiments PRIDE	ENSG00000118137	ENST00000375323	116211677	<u>116213571</u>	<u>11</u>	APOA1	ENSP00000364472	13	HUPO Plasma Proteome Project, Lab # 2 Expt # 17	IPI00021841	<u>P02647</u>
Filters Filter by Tissue : blood plasma	ENSG00000118137	ENST00000359492	116211677	<u>116213571</u>	11	APOA1	ENSP00000352471	13	HUPO Plasma Proteome Project, Lab # 2 Expt # 17	IPI00021841	<u>P02647</u>
Attributes PRIDE Experiment Accession	ENSG00000180210	ENST00000311907	<u>46697331</u>	<u>46717631</u>	<u>11</u>	<u>F2</u>	ENSP00000308541	<u>13</u>	HUPO Plasma Proteome Project, Lab # 2 Expt # 17	IPI00019568	<u>P00734</u>
Experiment Title Submitted Protein Accession	ENSG00000149131	ENST00000278407	<u>57121436</u>	<u>57138902</u>	<u>11</u>	SERPING1	ENSP00000278407	13	HUPO Plasma Proteome Project, Lab # 2 Expt # 17	IPI00291866	<u>P05155</u>
Uniprot Accession	ENSG00000110245	ENST00000375345	116205834	116208998	11	APOC3	ENSP00000364494	13	HUPO Plasma Proteome Project, Lab # 2 Expt # 17	IPI00021857	<u>P02656</u>
	ENSG00000110245	ENST00000227667	116205834	116208998	<u>11</u>	APOC3	ENSP00000227667	13	HUPO Plasma Proteome Project, Lab # 2 Expt # 17	IPI00021857	<u>P02656</u>
	ENSG00000110169	ENST00000265983	6408858	<u>6418830</u>	11	HPX	ENSP00000265983	<u>13</u>	HUPO Plasma Proteome Project, Lab # 2 Expt # 17	IPI00022488	<u>P02790</u>

www.biomart.org

DATA SUBMISSION TO PRIDE



Journals recommend PRIDE as submission point

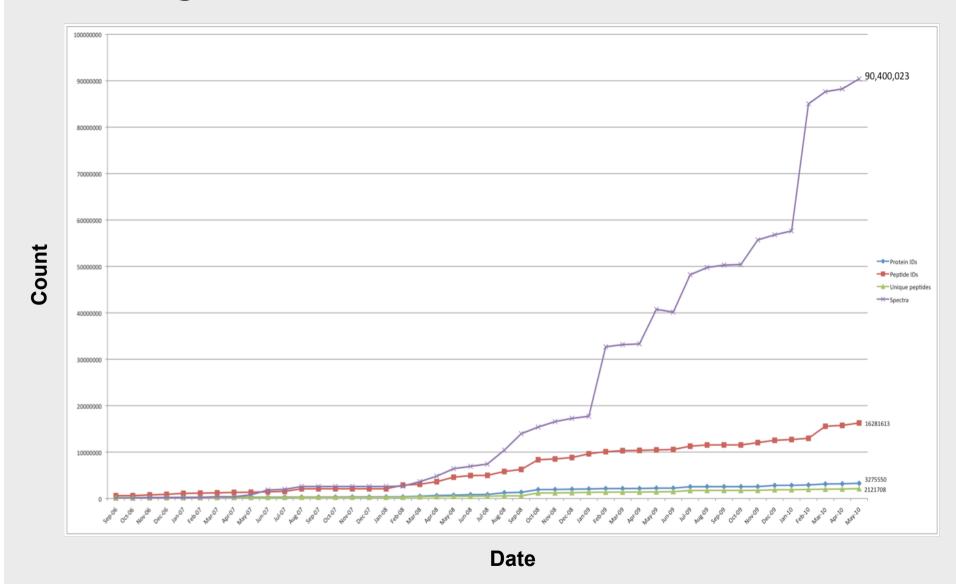
 Journal guidelines recommend now submission to proteomics repositories:

- Proteomics
- Nature Biotechnology
- Nature Methods
- Molecular and Cellular Proteomics

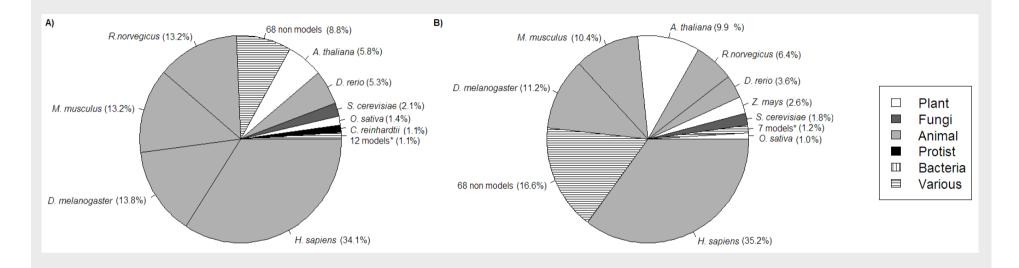
- Closer collaboration between Proteomics and PRIDE:
- "Deposition of supporting data in a public, open access database like PRIDE or World-2DPAGE is strongly recommended, and **mandatory** for Dataset Briefs"

MCP new guidelines

New guidelines from **MCP** for **data deposition**:

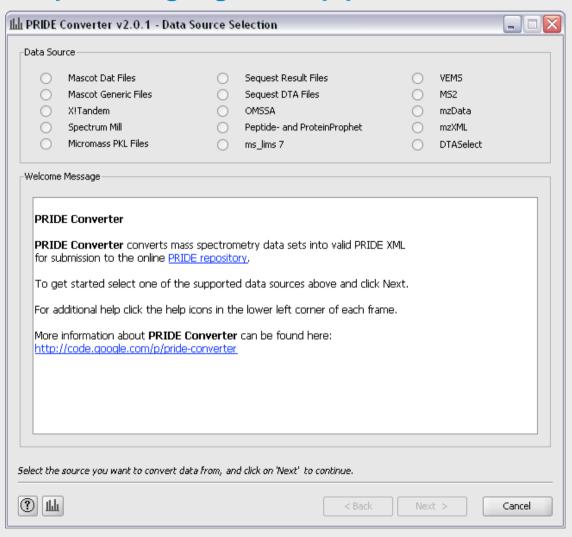

For all proteins identified on the basis of **ONE OR TWO unique peptide spectra**, the ability to view **annotated spectra** for these identifications must be made available. This can be achieved in one of three ways:

- 1) Submission of spectra and search results to a **public results repository** that is **equipped with a spectral viewer** (e.g. **PRIDE**, Peptidome etc). This information will appear as a **hyperlink** in the published article...
- Submission (with the manuscript) of spectra and search results in a file format that allows visualization of the spectra using a freely-available viewer.
- 3) Submission (with the manuscript) of annotated spectra in an 'office' or PDF format.


PRIDE growth

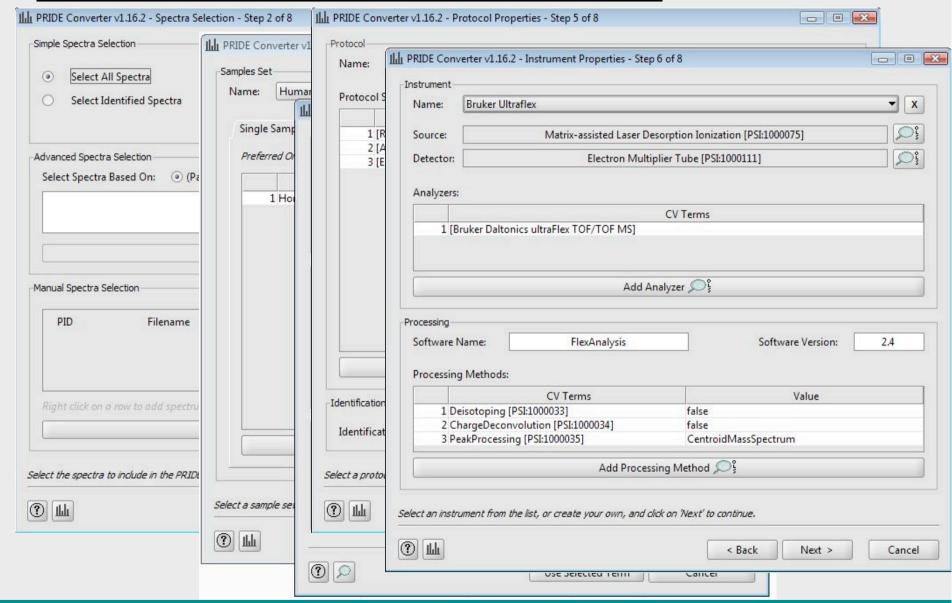
PRIDE data content

Protein IDs


Peptide IDs

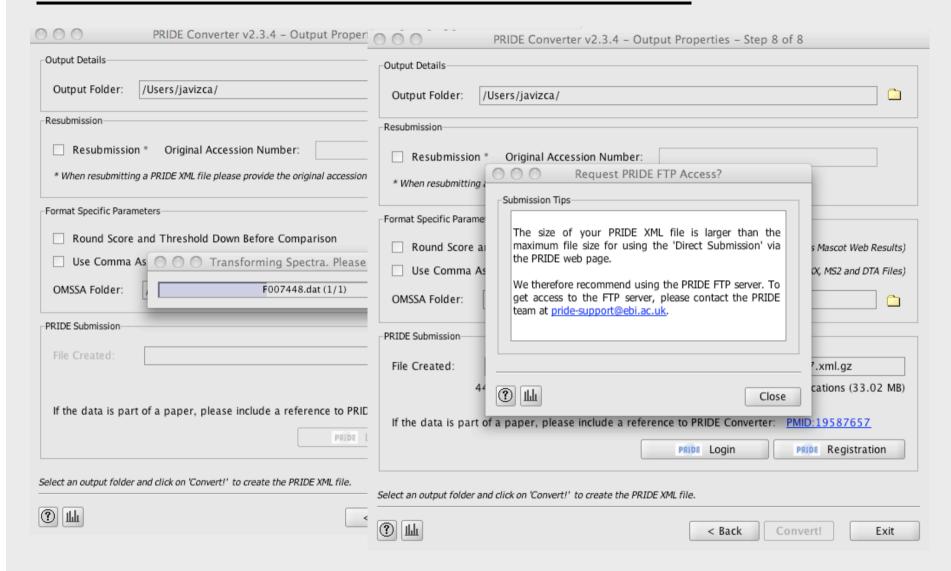
Why? Submission made easier: PRIDE Converter

http://code.google.com/p/pride-converter



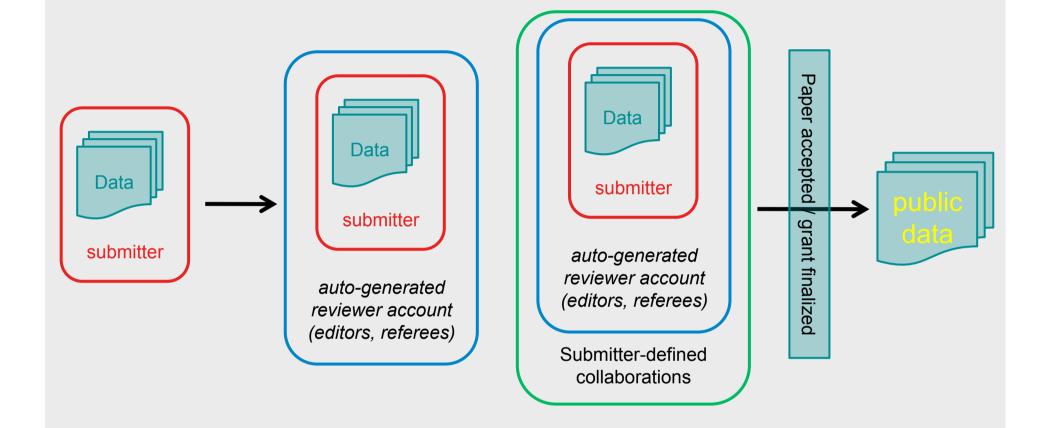
Barsnes et al., 2009

PRIDE Converter – interface details



Juan A. Vizcaíno

juan@ebi.ac.uk


From PRIDE Converter to PRIDE FTP

Data access privileges in PRIDE

PRIDE relies on a simple but very powerful group-based access system that can accommodate even more complex data release schemes than pictured here

OTHER PROTEOMICS REPOSITORIES

Existing proteomics repositories

- Main public repositories:
 - PROteomics IDEntifications database (PRIDE)
 - Global Proteome Machine (GPMDB)
 - Peptide Atlas
 - Tranche
 - NCBI Peptidome

Smaller scale repositories, more specialized:

Among others: Human Proteinpedia, Genome Annotation Proteomics Pipeline (GAPP), MAPU, SwedCAD, PepSeeker, Open Proteomics Database, ...

• Very diverse: different aims, functionalities, ...

Other MS proteomics repositories

		347/391		rranche
Reprocesses data	Reprocesses data	No reprocessing	No reprocessing	No reprocessing
Editorial control	Editorial control	No editorial control	No editorial control	No editorial control
Limited annotation	Limited annotation	Detailed annotation	Detailed annotation	Limited annotation
??	170 million peptides	96 million spectra	3.8 million spectra	??
??	22.3 million protein IDs	3.7 million protein IDs	60,000 protein IDs	??

PeptideAtlas

- Peptide identifications from MS/MS

- Data are reprocessed using the popular *Trans Proteomic Pipeline* (TPP)
- Uses **PeptideProphet** to derive a probability for the correct identification for all contained peptides

http://www.peptideatlas.org

Search PeptideAtlas

GO

ATLAS DATA: Data Repository HPPP Data Central PeptideAtlas Builds Search Database

Data Contributors

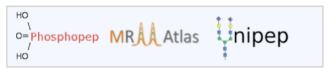
Publications

Software Database Schema Feedback

Contribute Data Genome Browser Setup

RELATED: MRM Atlas Phosphopeo Unipep mspecLINE

SPECTRAL LIBS: Libraries + Info SpectraST Search


GLOSSARY/TERMS: Atlas nomenclature SGD nomenclature Protein ID terms

LOGIN

PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass spectrometer output files are collected for human, mouse, yeast, and several other organisms, and searched using the latest search engines and protein sequences. All results of sequence and spectral library searching are subsequently processed through the Trans Proteomic Pipeline to derive a probability of correct identification for all results in a uniform manner to insure a high quality database, along with false discovery rates at the whole atlas level. Results may be queried and browsed at the PeptideAtlas web site. The raw data, search results, and full builds can also be downloaded for other uses.

Related Resources

Atlas News

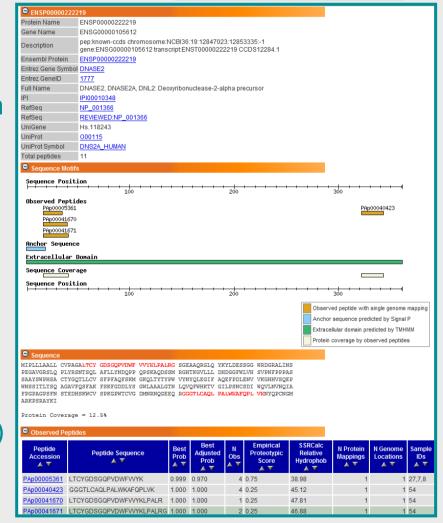
News 2010-03: Members of the PeptideAtlas team have recently published mspecLINE, a web application that allows researchers to explore relationships between human diseases and the observed proteome.

News 2010-02: For the first time, a Mouse PeptideAtlas build, based on 64 samples from a variety of tissues and subcellular compartments, is available to search

News 2009-08: A new build of the Drosophila PeptideAtlas is now available to search. The data is described in this publication by Erich Brunner et.al.

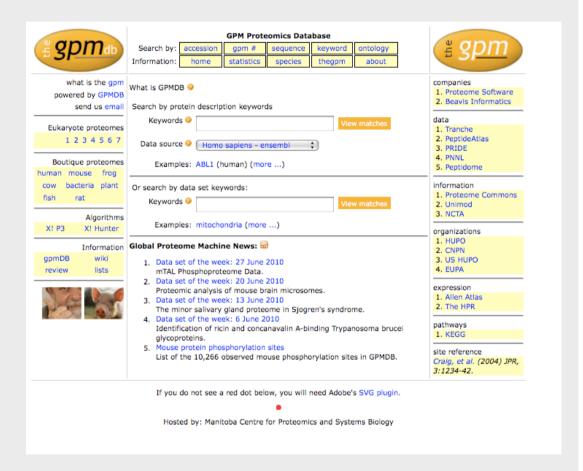
News 2009-06-30: A new build of the Human PeptideAtlas is now available to search. In this build, we used much more stringent criteria, spectra FDR 0.00001, to report the peptides identified, so the number of distinct peptides identified is much lower than the previous build.

News 2009-06: New version 3.0 spectrum libraries from NIST now available at the PeptideAtlas Spectrum Library Central Page


PeptideAtlas

- All peptides mapped to *Ensembl* using **ProteinProphet** (for human)
- Built by the Aebersold lab to help them find proteotypic peptides
- Provides proteotypic peptide predictions
- Limited metadata
- Great support for targeted proteomics approaches (SRM/MRM)

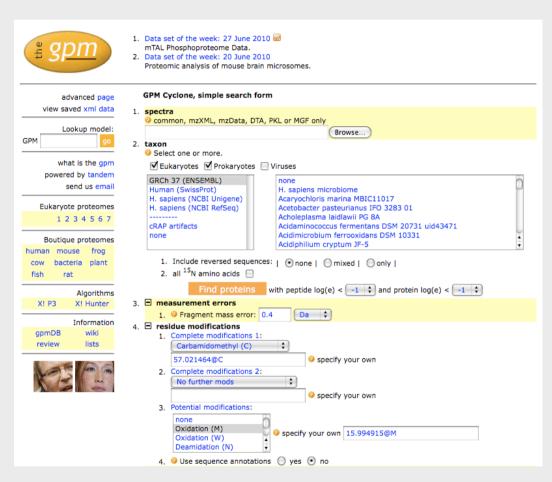
http://www.peptideatlas.org



GPMDB

• End point of the *GPM*proteomics pipeline, to aid in the process of validating peptide MS/MS spectra and protein coverage patterns.

http://gpmdb.thegpm.org/

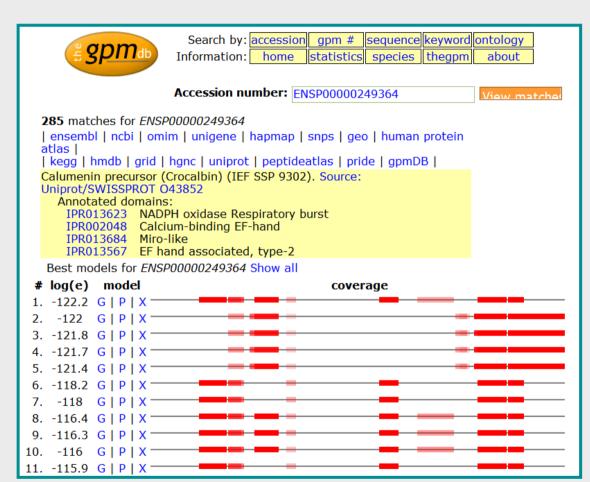


GPMDB

© gpmdb

- End point of the GPM
 proteomics pipeline, to aid in
 the process of validating
 peptide MS/MS spectra and
 protein coverage patterns.
- Data are reprocessed using the popular X!Tandem or X! Hunter spectral searching algorithm
- Also provides proteotypic peptides

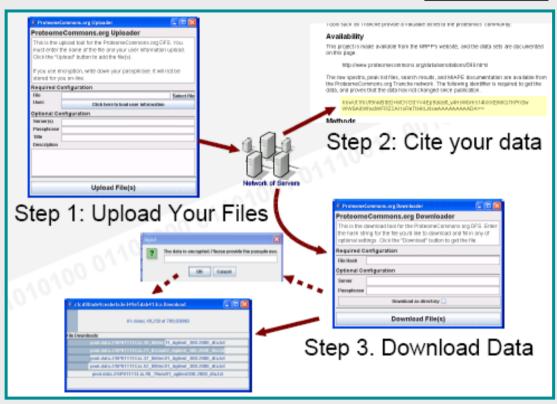
http://gpmdb.thegpm.org/



GPMDB

- Powerful visualization features
- Provides very limited annotation with GO, BTO
- Some support to targeted approaches is available

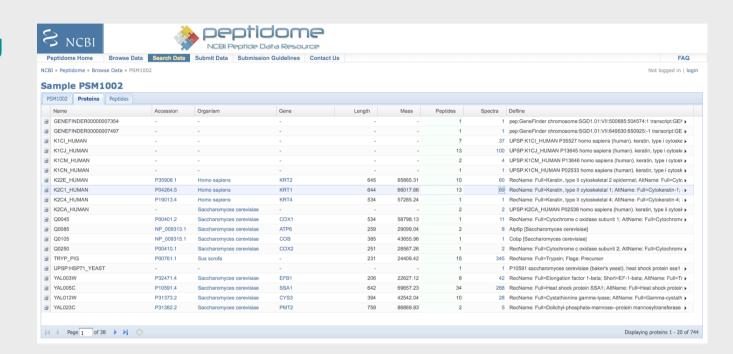
http://gpmdb.thegpm.org/



Tranche

- Peer-to-peer distributed filesystem (original name: the DFS)
- Meant to securely store, and conveniently deliver large amounts of data
- Provides a highly specialized, but much needed niche service
- Has already been used by PRIDE to store certain large files
- Very limited annotation (metadata is not mandatory)

http://tranche.proteomecommons.org



NCBI Peptidome

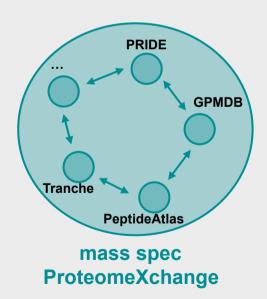
- No reprocessing
- Detailed annotation (no CVs)
- Review system
- Sibling resource to PRIDE

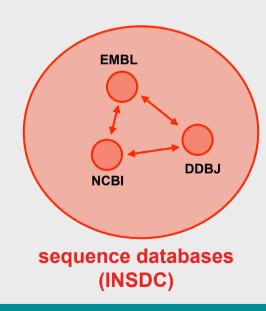
http://www.ncbi.nlm.nih.gov/peptidome/

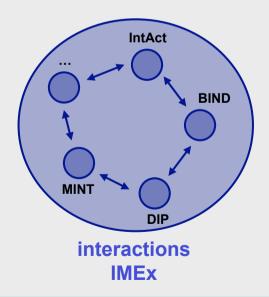
Other MS proteomics repositories

				114116116
Reprocesses data	Reprocesses data	No reprocessing	No reprocessing	No reprocessing
Editorial control	Editorial control	No editorial control	No editorial control	No editorial control
Limited annotation	Limited annotation	Detailed annotation	Detailed annotation	Limited annotation
??	162 million peptides	92 million spectra	3.8 million spectra	??
??	21.5 million protein IDs	3.5 million protein IDs	60,000 protein IDs	??

PRIDE AND OTHER REPOSITORIES: ProteomeXchange






For sharing, superstructures must be built

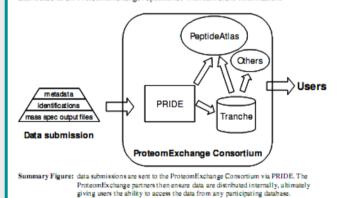
Often, multiple repositories will emerge more or less simultaneously in a particular field. By exchanging data, and by collaborating on data acquisition an increase in coverage as well as a more comprehensive dataset is obtained by each individual resource.

Such superstructures do require additional infrastructure, however.

ProteomeXchange consortium

- Sharing proteomics data between existing proteomics repositories
- Includes PeptideAtlas, GPMDB, NCBI Peptidome and PRIDE, with data sharing infrastructure provided by Tranche
- Submission guidelines document finalized, it was proven on three different datasets
- ProteomeXchange is primarily
 user-oriented: the idea is to provide
 a single point of submission, but
 multiple points of data visualization
 and analysis

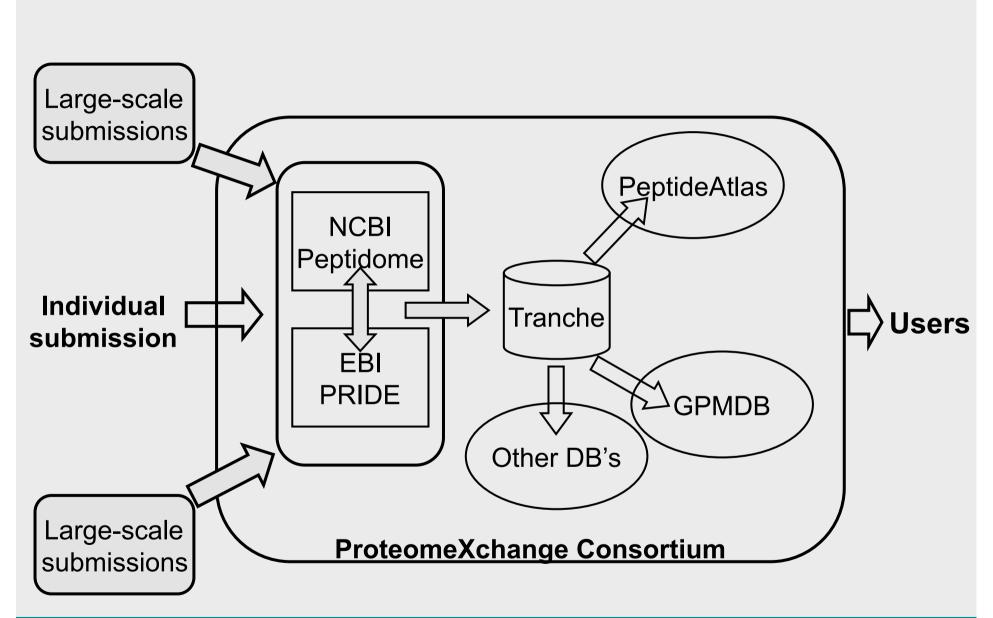
Proteomics data submission strategy for ProteomExchange


1. Summary

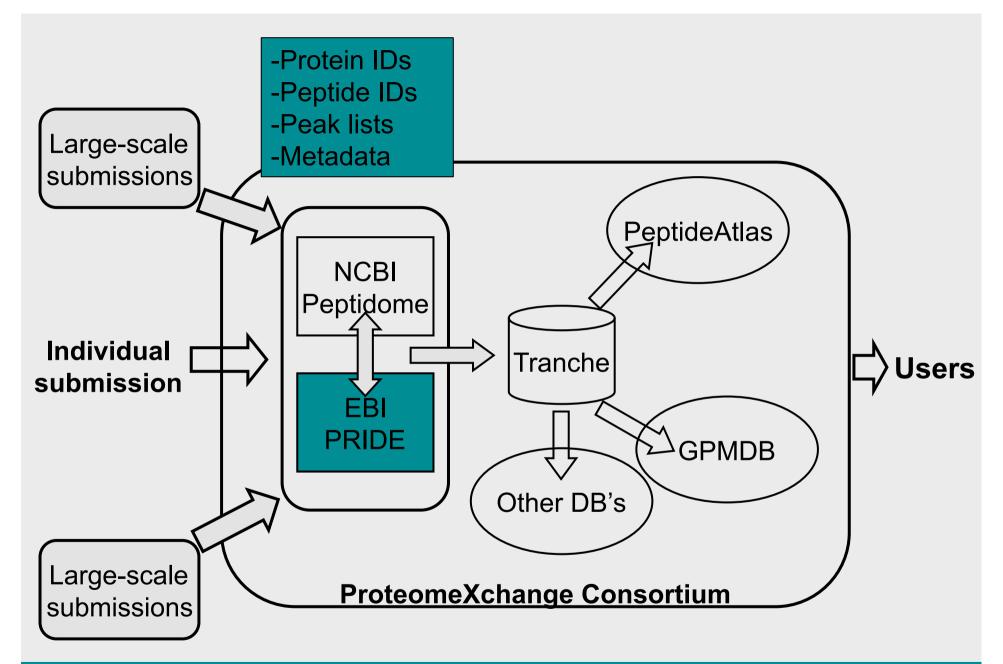
This document provides detailed guidelines for the submission of mass spectrometry-derived proteomics data to the Proteom Exchange conscritum databases PRIDE²⁻⁵, PeptideAtlas^{6,7}, and Tranche^{7,8}. First the policy is summarized in this section; then in subsequent sections, definitions of terms, descriptions of the relevant resources, details on the submission path, and policies regarding data ownership and data privacy are provided. This policy has been adopted by the HUPO Plasma Proteome Project^{9,10} for the collection of its Phase II data; it is hoped that widespread adoption will follow.

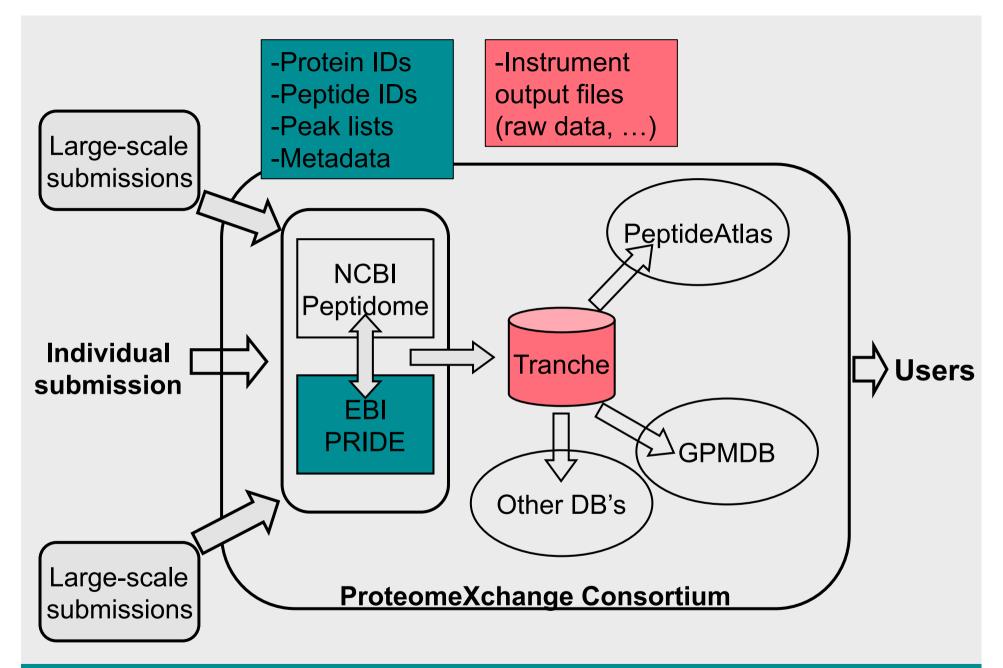
Each submission shall consist of three major components: mass spectrometer output files, study metadata, and peptide/protein identifications (further details in section 4; definitions provided in section 2). All submissions will include all three components and will be made to the PRIDE repository using data sufficiency guidelines established by PRIDE as described below.

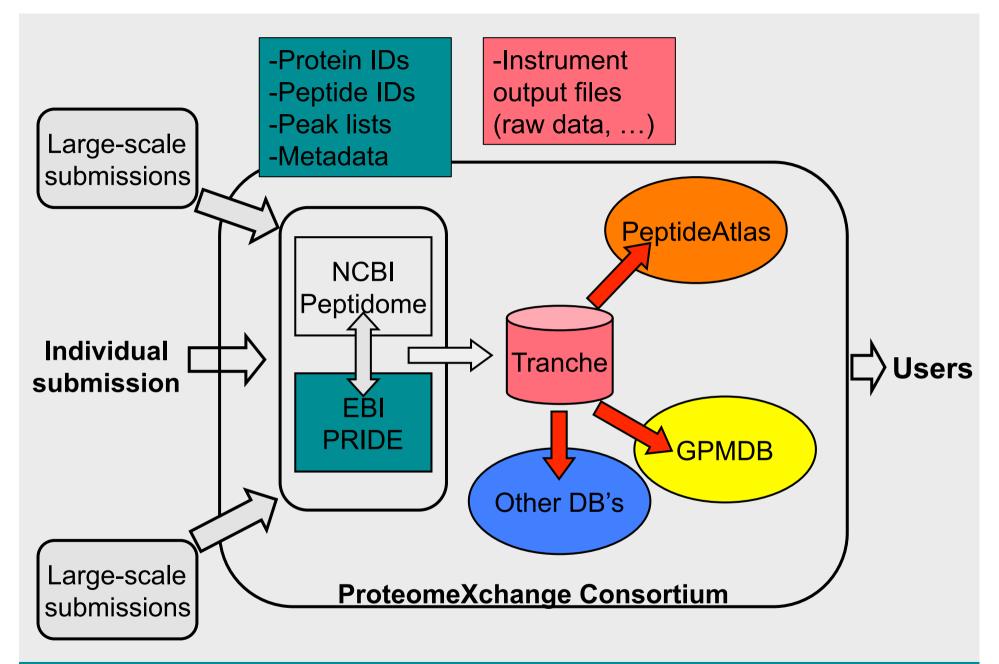
At the time when the submitted data are declared publicly available by the submitter, all mass spectrometer output files will be deposited in the Tranche repository. Hash keys required to download this information from Tranche and study metadata will be displayed in PRIDE and actively transmitted to PeptideAtlas and any other participating ProteomExchange repositories (see section 3 for information about the individual repositories) for further processing.


This insures that a simple one-time submission from a contributer is automatically distributed to all ProteomExchange repositories with sufficient information.

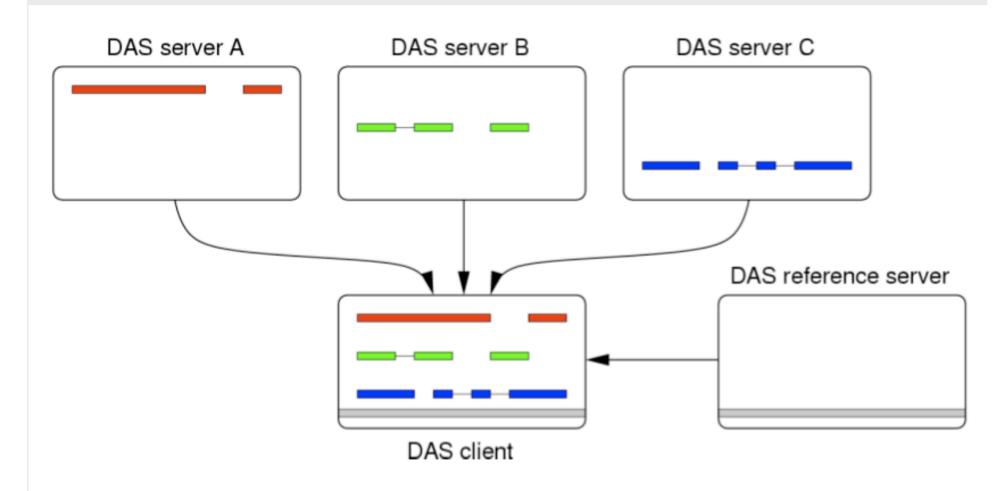
www.proteomexchange.org



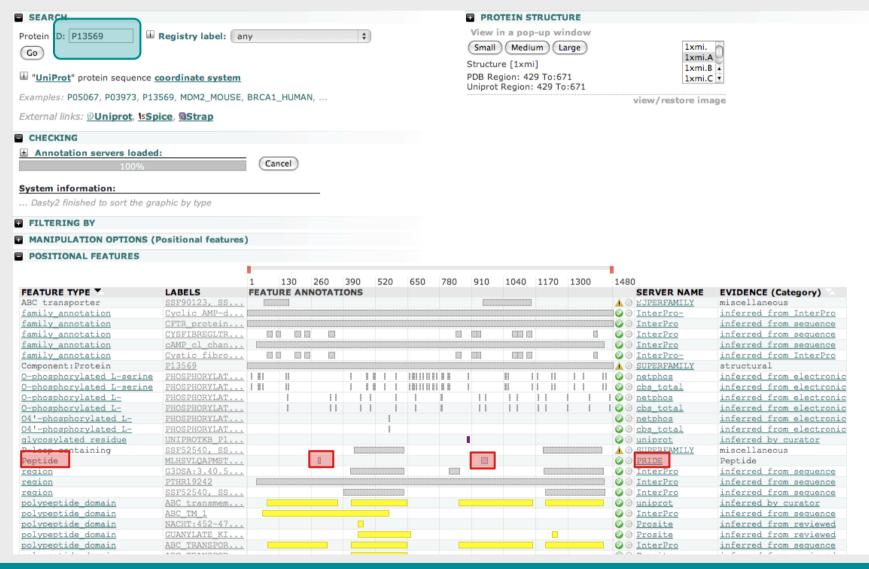




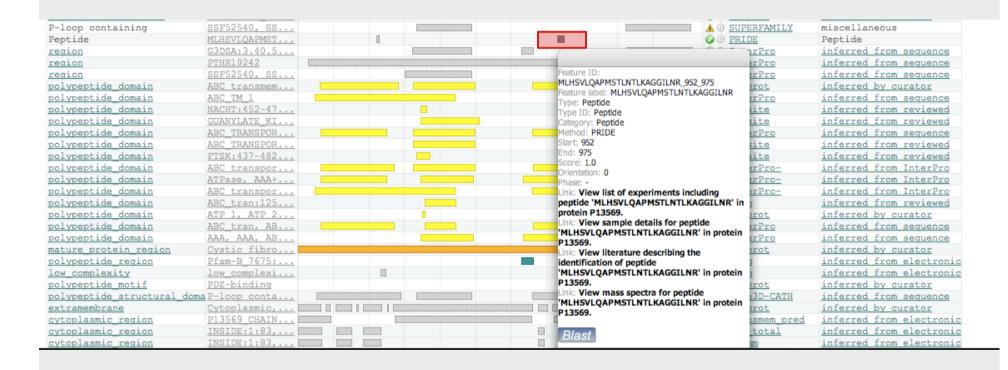
PRIDE: why is it there?


- Repository to support publications (proteomics MS derived data)
- Source of proteomics data for other data resources

Distributed Annotation System

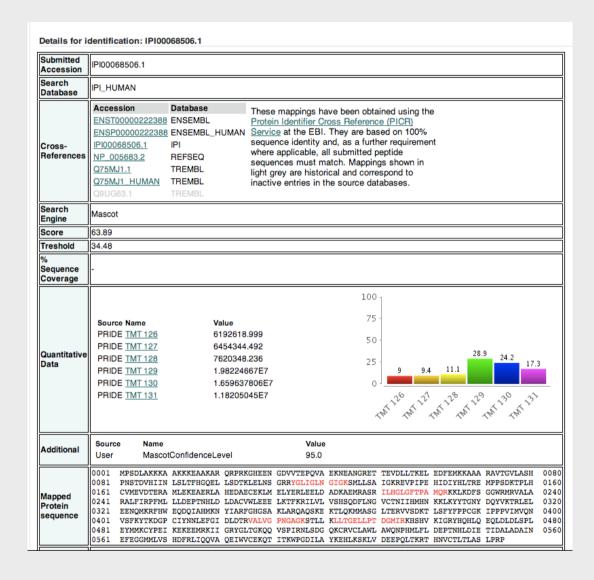


(http://www.ebi.ac.uk/dasty/)


PRIDE DAS server: Dasty example (1)

PRIDE DAS server: Dasty example (2)

Data sharing requires proper infrastructure


- Community supported, standardized data formats
 Necessary to allow efficient access to the data
- Controlled vocabularies (CVs) and ontologies
 To provide unambiguous context and metadata to the actual data, as well as enabling powerful queries to be performed on the data
- Minimal reporting requirements for specific data types
 Ensures the presence of certain bits of information without which interpretation is ambiguous, hampered or impossible
- Publicly available, online repositories

Bioinformatics grew up along side the internet, and this is reflected in the successful online data sharing mechanism already in place in the life sciences. The repositories should implement the standards, use the CV's and ontologies, and adhere to the minimal requirements.

Coming soon... support for quantitative data

Do you want to know a bit more...?

D736-D742 Nucleic Acids Research 2010 Vol. 38 Database issue

Published online 11 November 2009

The Proteomics Identifications database: 2010 update Juan Antonio Vizcaíno¹, Richard Côté¹, Florian Reisinger¹, Harald Barsnes²,

Joseph M. Foster¹, Jonathan Rameseder^{1,3}, Henning Hermjakob¹ and Lennart Martens^{1,*}

¹EMBL Outstation, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK, ²Department of Informatics, University of Bergen, Norway and ³Computational and Systems Biology Initiative, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Descript Controlog 10, 2000; Deviced Outstan 6, 2000; Assested Outstan 12, 2000

The Proteomics Identifications database (PRIDE, http://www.ebi.ac.uk/pride) at the European Bioinformatics Institute has become one of the main repositories of mass spectrometry-derived proteomics data. For the last 2 years, PRIDE data proteomics data. For the last 2 years, PRIDE data holdings have grown substantially, comprising 60 different species, more than 2.5million protein (dentifications, 11.5million) peptides and over 50 million spectra by September 2009. We here describe several new and improved features in PRIDE, including the revised submission process, with the control of the provided submission process, which was not submission process, which was not submission processing the provided submission process. ion annotations. Correspondingly, it is now possible to visualize spectrum fragmentation annotations on tandem mass spectra, a key feature for compliance with journal data submission requirements. We also describe recent developments in the PRIDE BioMart interface, which now allows integrative queries that can join PRIDE data to a growing number of biological resources such as Reactione, Ensemb, interPropulation of the property of the propulation of the proteomics field, and the correspondsharing in the proteomics field, and the corresponddescribe recent developments in the PRIDE RigMart ing integration of PRIDE with other databases in the

INTRODUCTION

Mass spectrometry (MS) is currently the most commonly used technology for the identification and quantification of proteins. Like in any other omics' field, the amount of data generated by MS-based proteomics has increased exponentially in the last few years, which has prompted the development of several data repositories. The Proteomics Identifications database (PRIDE)

(http://www.ehi.ac.uk/pride) was developed at the European Bioinformatics Institute (EBI), as a repository to the property of the proposition of the property of the property

PRIDE does not stand alone in this field, however, as several other protomics databases have been established over the past few years. GPAIDB (7), Peptdecktais (8) and Proteinpedia (9) are among the most important system (http://ranche.proto-mocommons.org/ provides a data transfer lawer relying on pere-to-pere Internet protocol technology, Finally, the most recently launched protomics repository in the NCBI Peptidome (11), a centralized, public proteomics data repository not dissim-ilar from PRIDE in its objectives. For an up-to-deat iew covering the capabilities of a comprehen

resires overfagt the capabilities of a comprehensive elec-tion of proteomies. MS repositories see Mead et al. (21.2) PRIDE stores three different kinds of information: MS and MS/MS mass spectra aspea kits, the derived peptide and protein identifications (IDs) and any associated metadata. Indeed, one of the advantage PMIDE office and the protein destriction of the protein services of the structured metadata it contains, which is a key require-ment to put the stored data in biological and/or technical context. Furthermore, together with the newly released NCBI Peptideom, the established PRIDE database constitutes an actual structured data repository, data and the contraction of the protein of the prote

data.

Another important feature of PRIDE is that it allows Another important teature of PRIDE is that it anows data to remain private while anonymously sharing it with journal editors and reviewers through so-called 'reviewer log-in accounts'. As a result, PRIDE is now the recommended submission point for proteomics data for several journals such as Nature Biotechnology (13), Nature

*To whom correspondence should be addressed. Tel: +44 1223 492 610: Fax: +44 1223 494 484: Email: lennart.martens@ebi.ac.uk

CORRESPONDENCE

PRIDE Converter: making proteomics data-sharing easy

Data'l correctly addressed the increasing importance of making proteomics data publicly available so that it can be audited, reanalyzed or reused. To make global data-sharing in the field work, however it is important to minimize the burden of uploading data into publicly available

databases, such as PRIDE². To this end, we have written a freely available, open source tool called PRIDE Converter that makes it straightforward to submit proteomics data to PRIDE from most common data formats Public availability of data is the standard

modus operandi for most of the life sciences ranging from genome sequences, over microarray data, to protein information. Some of the best known examples in the field of proteomics include protein sequences in UniProt (http://www.uniprot.org/), protein structures in the Protein Databank (http:// www.rcsb.org/) and protein modifications in UniMod and RESID (http://www.unimod. ore/ and http://www.ebi.ac.uk/RESID). As highlighted in your 2007 editorial! making data publicly available in a standardized and structured way enables other researchers to access and reanalyze the data, and to use the ollected results in novel ways.

collected results in novel ways.

Indeed, much of the progress over the past years in emerging fields, such as mass spectrometry (MS)-based proteomics, is directly related to the public availability of data obtained in earlier efforts*, specifically use genome sequencing projects. Not surprisingly, the need for data-sharing in the field of proteomics lettled vary discharge positions and the project position of the projec PRIDE, PeptideAtlas and Proteinpedia

The PRIDE repository at the European The PKIDE repository at the European Bioinformatics Institute (http://www.ebi. ac.uk/pride/) occupies a special place in the list of proteomics databases, in that it constitutes an actual data repository and

submitted data¹. Additionally, it provides a simple yet powerful infrastructure to support anonymous peer review of submitted data in the system. The PRIDE database has so in the system. The PRIDE database has so far accumulated data on more than 9,500 experiments, collectively containing more than 40 million mass spectra, identifying well over 1.4 million unique peptide sequences,

publicly available, such as uploading raw reduce, reputations and rotempetual among the most prominent? With this infrastructure in place, journals have followed usit by starting to request deposition of MS-related data in these databases.¹⁶. and tools to the scientific community. and tools to the scientific community; based on uploaded data. PRIDE for instance includes tools for (i) visualizing protein coverage, peptide modifications and spectrum annotations, (ii) automatic

to identifiers from all other commonly used proteomics databases using the PICR service⁸ and (iii) comprehensive protein list comparisons (through Venn diagrams)9

Submitting data to PRIDE could be Submitting data to PRIDE could be challenging for some users, however. PRIDE relies on an XML-based data format for submissions, which is built around the Proteomics Standards Initiative mzData standard for mass spectrometry (http://www.ebi.ac.uk/pride/ schemaXmlsnvl scumented, converting proteomics data to PRIDE XML could present difficulties. especially for wet-lab scientists without especiany for wer-tab scientists without a strong bioinformatics background or informatics support. To alleviate this problem, two tools for converting data into PRIDE XML have already been developed: the ProteomeHarvest PRIDE Submission Spreadsheet, which is Microsoft Excel-based (http://www.ebi.ac.uk/pride/ proteomeharvest/), and the PRIDE Wizard for Mascot result files (http://www.mcisb.

VOLUME 27 NUMBER 7 HULY 2009 NATURE BIOTECHNOLOGY

Proteomics 2009 9 1-8

DOI 10 1002/pmic 200900402

STANDARDISATION & GUIDELINES

A guide to the Proteomics Identifications Database proteomics data repository

Juan Antonio Vizcaíno¹, Richard Côteí¹, Florian Reisinger¹, Joseph M. Foster¹ Michael Mueller¹, Jonathan Rameseder^{1,2}, Henning Hermjakob¹ and Lennart Martens¹

¹ EMBL Outstation, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK ²Computational and Systems Biology Initiative, Massachusetts Institute of Technology, Cambridge, MA, USA

The Proteomics Identifications Database (PRIDE, www.ebi.ac.uk/pride) is one of the main repositories of MS derived proteomics data. Here, we point out the main functionalities of PRIDE both as a submission repository and as a source for proteomics data. We describe the main features for data retrieval and visualization available through the PRIDE web and BioMart interfaces. We also highlight the mechanism by which tailored queries in the BioMart can join PRIDE to other resources such as Reactome, Ensembl or UniProt to execute extremely powerful across-domain queries. We then present the latest improvements in the PRIDE submission process, using the new easy-to-use, platform-independent graphical user interface submission tool PRIDE Converter. Finally, we speak about future plans and the role of PRIDE in the ProteomExchange consortium.

Received: June 9, 2009

Bioinformatics / Data repository / Mass spectrometry

1 Introduction

Bioinformatics tools and data repositories provide one of the main pillars of biology in the 21st century. Indeed, public availability of biological data via the Internet has changed the way biologists plan, execute and interpret their studies. Some of the best known protein-related resources include UniProt [1] for protein sequences and annotation, the Protein Databank [2] and other members of the wwPDB consortium [3] for protein structures, Intact [4] and other components of the IMEx consortium [5] for protein interactions, InterPro [6] for protein domains, and UniMod [7] and RESID [8] for protein modifications.

Correspondence: Dr. Lennart Martens, EMBL Outstation, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK E-mail: lennart.martens@ebi.ac.uk Fax: +44-1223-494-484

www.proteomics-journal.com

Like in any other "omics" field the amount of data generated by MS based proteomics has increased exponen-tially in the last few years, which prompted the development of several data repositories. At the same time, proteome informatics efforts have driven the development of univer sally adopted and stable data formats under the auspices o the HIIPO Proteomics Standards Initiative (HIIPO-PSI www.psidev.info), and have led to powerful data analysis strategies [9, 10]. Taken together, these advances have allowed the centralized aggregation of proteomics data and its reanalysis or meta-analysis, ultimately turning proteo-mics into a much more robust discipline in the life sciences.

Several proteomics MS data repositories have been established so far, with GPMDB [11], Proteomics Identifi-cations Database (PRIDE) [12], PeptideAtlas [13] and Proteinpedia [14] among the most prominent ones at present [15, 16]. Additionally, the NCBI recently launched their Peptidome (http://www.ncbi.nlm.nih.gov/projects/ peptidome) system as a centralized, public proteomics repository not dissimilar from PRIDE. The Tranche (http:// tranche.proteomecommons.org) system is used in the field as well, and essentially presents a data transfer laver relying on peer-to-peer Internet protocol technology. Apart from these large-scale efforts, there are also smaller, more

InterScience' © 2009 WILEY-VCH Verlag GmbH & Co. KGaA

The PRIDE Team

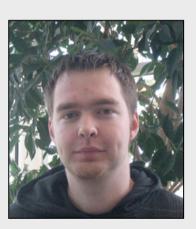
Attila Csordas

Daniel Ríos

Richard Côté



Florian Reisinger


Henning Hermjakob

Rui Wang

Joe Foster (Ph.D. student)

Andreas Schonegger (Trainee)

Links, collaborations and funding

http://www.psidev.info

http://www.ebi.ac.uk/ols

http://www.ebi.ac.uk/pride

http://www.ebi.ac.uk/tools/picr

http://www.ebi.ac.uk/pride/dod

juan@ebi.ac.uk

pride-support@ebi.ac.uk

PRIDE collaborators

Funding

Thank you!

Questions?